Contra - Bc - Continuous Functions in Topological Spaces

Raja Mohammad Latif ${ }^{1}$, Muhammad Rafiq Raja², Muhammad Razaq ${ }^{3}$
${ }^{*}$ Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al-Khobar, Kingdom of Saudi Arabia
${ }^{2}$ Department of Mathematics, University of Sargodha, Mandi Bahauddin Campus, Pakistan ${ }^{3}$ Department of Mathematics, Horizon Degree College and Commerce College, Bhaun Road, Chakwal, Pakistan

Abstract

In this paper by means of Bc -open sets, we introduce and investigate certain ramifications of contra continuous and allied functions, namely, contra- $\mathrm{Bc}-$ continuous, almost- Bc -continuous, almost weakly $-\mathrm{Bc}-$ continuous and almost contra $-\mathrm{Bc}-$ continuous functions along with their several properties, characterizations and natural relationships. Further, we introduce new types of graphs, called Bc -closed, contra - Bc - closed and strongly contra - Bc - closed graphs via Bc-open sets. Several characterizations and properties of such notions are investigated.

Keywords : Almost contra- Bc -continuous, contra- $\mathrm{Bc}-\mathrm{closed}$ Graph, contra- Bc -continuous, Bc -connected, Bc -open.

2010 Mathematics Subject Classification: 54A05, 54A10, 54C05.

I. INTRODUCTION

In recent literature, we find many topologists have focused their research in the direction of investigating different types of generalized continuity. One of the outcomes of their research leads to the initiation of different orientations of contra continuous functions. The notion of contra continuity was first investigated by Dontchev [7]. Subsequently, Jafari and Noiri [15, 16] exhibited contra $-\alpha$-continuous and contra - pre-continuous functions. Contra δ - precontinuous [10] was studied by Ekici and Noiri. contra-e-continuous functions [12] was studied by Gosh and Basu. A good number of researchers have also initiated different types of contra continuous - like functions, some of which are found in the papers [6, 8, 11, 18, 23]. In [1] Al Abdullah and Abed introduced a new class of sets in a
topological space, known as Bc -open sets. In this paper, we employ this notion of Bc -open sets to introduce and investigate contra continuous functions, called contra - Bc - continuous functions. We study fundamental properties of contra $-\mathrm{Bc}-$ continuous functions and use such functions to characterize Bc -connectedness. We introduce and study the properties of almost contra $-\mathrm{Bc}-$ continuous functions as well. We also introduce and study the notions of Bc -closed, contra-Bc-closed and slightly contra - closed graphs.

II. PRELIMINARIES

In this paper, spaces X and Y always represent topological spaces (X, τ) and (Y, σ) respectively on which no separation axioms are assumed unless otherwise stated. For a subset A of a space $\mathrm{X} \mathrm{Cl}(\mathrm{A})$
and $\operatorname{Int}(\mathrm{A})$ denote the closure and the interior of A respectively.
Definition 2.1. Let (X, τ) be a topological space and $\mathrm{A} \subseteq \mathrm{X}$. Then A is called b -open set in X if $\mathrm{A} \subseteq \mathrm{Cl}[\operatorname{Int}(\mathrm{A})] \cup \operatorname{Int}[\mathrm{Cl}(\mathrm{A})]$. The family of all $b-$ open subsets of a topological space (X, τ) is denoted by $\mathrm{BO}(\mathrm{X}, \tau)$ or (Briefly $\mathrm{BO}(\mathrm{X})$).
Lemma 2.2. Arbitrary union of b-open sets in a topological space is b -open set.
Proof. Let (X, τ) be a topological space and let $\left\{\mathrm{A}_{\alpha}: \alpha \in \Delta\right\}$ be a family of b -open sets in X . Let $\mathrm{A}=\bigcup_{\alpha \in \Delta} \mathrm{A}_{\alpha}$. Then for each $\alpha \in \Delta, \mathrm{A}_{\alpha} \subseteq \mathrm{A}$. Then it follows
immediately
$\mathrm{Cl}\left[\operatorname{Int}\left(\mathrm{A}_{\alpha}\right)\right] \subseteq \mathrm{Cl}[\operatorname{Int}(\mathrm{A})]$
and $\operatorname{Int}\left[\mathrm{Cl}\left(\mathrm{A}_{\alpha}\right)\right] \subseteq \operatorname{Int}[\mathrm{Cl}(\mathrm{A})]$. Further by hypothesis, $\quad \mathrm{A}_{\alpha} \subseteq \mathrm{Cl}\left[\operatorname{Int}\left(\mathrm{A}_{\alpha}\right)\right] \cup \operatorname{Int}\left[\mathrm{Cl}\left(\mathrm{A}_{\alpha}\right)\right]$.
Hence it implies immediately that $\mathrm{A}_{\alpha} \subseteq \mathrm{Cl}[\operatorname{Int}(\mathrm{A})] \cup \operatorname{Int}[\mathrm{Cl}(\mathrm{A})]$, for each $\alpha \in \Delta$. Thus $\mathrm{A}=\bigcup_{\alpha \in \Delta} \mathrm{A}_{\alpha} \subseteq \mathrm{Cl}[\operatorname{Int}(\mathrm{A})] \cup \operatorname{Int}[\mathrm{Cl}(\mathrm{A})]$. Therefore, $\mathrm{A}=\bigcup_{\alpha \in \Delta} \mathrm{A}_{\alpha}$ is a b -open set in X .
Definition 2.3. Let (X, τ) be a topological space and $\mathrm{A} \subseteq \mathrm{X}$. Then A is called Bc -open set in X if for each $x \in A \in B O(X, x)$, there exists a closed set F such that $x \in F \subseteq X$. The family of all $\mathrm{Bc}-$ open subsets of a topological space (X, τ) is denoted by $\mathrm{Bc}-\mathrm{O}(\mathrm{X}, \tau)$ or (Briefly $\mathrm{Bc}-\mathrm{O}(\mathrm{X})$). A is called Bc -closed if $\mathrm{A}^{\mathrm{c}}=\mathrm{X}-\mathrm{A}$ is Bc -open set. The family of all Bc - closed subsets of a topological space (X, τ) is denoted by $\mathrm{Bc}-\mathrm{C}(\mathrm{X}, \tau)$ or (Briefly $\mathrm{Bc}-\mathrm{C}(\mathrm{X})$).
Remark 2.4. It is clear from the definition that every Bc -open set is b -open, but the converse is not true in general as shown by the following example.

Example 2.5. Suppose that $X=\{1,2,3\}$, and the topology $\tau=\{\phi, X,\{1\},\{2\},\{1,2\}\}$. Then the closed sets are: $X, \phi,\{2,3\},\{1,3\},\{3\}$. Hence $\operatorname{BO}(X, \tau)=\{\phi, X,\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\}\}$ and $\mathrm{Bc}-\mathrm{O}(\mathrm{X}, \tau)=\{\phi, \mathrm{X},\{1,3\},\{2,3\}\}$. Then $\{1\}$ is b -open, but $\{1\}$ is not $\mathrm{Bc}-$ open .
Remark 2.6. The intersection of two Bc - open sets is not Bc -open set in general as shown by the following example.
Example 2.7. Suppose that $X=\{1,2,3\}$, and the topology $\tau=\{\phi, X,\{1\},\{2\},\{1,2\}\}$. Then $\{1,3\}$ and $\{2,3\}$ are $B c$-open sets where as $\{1,3\} \cap\{2,3\}=\{3\}$ is not Bc -open set.
Theorem 2.8. Arbitrary union of Bc - open sets in a topological space is $\mathrm{Bc}-$ open set.
Proof. Let $\left\{\mathrm{A}_{\alpha}: \alpha \in \Delta\right\}$ be a family of $\mathrm{Bc}-$ open sets in a topological space (X, τ). Then for each $\alpha \in \Delta$, A_{α} is a -open set in X and by Lemma 2.2, $\bigcup_{\alpha \in \Delta} \mathrm{A}_{\alpha}$ is b -open set. If $\mathrm{x} \in \bigcup_{\alpha \in \Delta} \mathrm{A}_{\alpha}$, then there exists $\gamma \in \Delta$ such that $\mathrm{x} \in \mathrm{A}_{\gamma}$. Since $\mathrm{x} \in \mathrm{A}_{\gamma}$ is Bc -open set, there exists a closed set F such that $\mathrm{x} \in \mathrm{F} \subseteq \mathrm{A}_{\gamma} \subseteq \bigcup_{\gamma \in \Delta} \mathrm{A}_{\gamma}$. Hence $\bigcup_{\gamma \in \Delta} \mathrm{A}_{\gamma} \quad$ is Bc - open set in X .
Theorem 2.9. A subset A of a topological space (X, τ) is Bc -open if and only if A is b -open and it is a union of closed sets.
Proof. Let A be a Bc -open set. Then A is b - open and for each $\mathrm{x} \in \mathrm{A}$, there exists a closed set F_{x} such that $x \in F_{x} \subseteq A$. This implies that $\mathrm{A}=\bigcup_{x \in A}\{\mathrm{x}\} \subseteq \bigcup_{x \in A} \mathrm{~F}_{\mathrm{x}} \subseteq \mathrm{A}$. Thus $\mathrm{A}=\bigcup_{x \in \mathrm{~A}} \mathrm{~F}_{\mathrm{x}}$ where F_{x} is closed set for each $x \in A$. The converse is directed from definition of Bc -open sets.
Definition 2.10. Let (X, τ) be a topological space and $\mathrm{A} \subseteq \mathrm{X}$. Then $\mathrm{Bc}-$ closure of A in X is the set
$\mathrm{Bc}-\mathrm{Cl}(\mathrm{A})=\bigcap\{\mathrm{K} \subseteq \mathrm{X}: \mathrm{K}$ is $\mathrm{Bc}-$ closed and $\mathrm{A} \subseteq \mathrm{K}\}$. Theorem 3.5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Definition 2.11. Let (X, τ) be a topological space and Then the following conditions are equivalent:
$\mathrm{A} \subseteq \mathrm{X}$. Then Bc -interior of A in X is the set $\mathrm{Bc}-\operatorname{Int}(\mathrm{A})=\bigcup\{\mathrm{U} \subseteq \mathrm{X}: \mathrm{U}$ is $\mathrm{Bc}-$ open and $\mathrm{U} \subseteq \mathrm{A}\}$. Definition 2.12. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then the subset $\{(x, f(x)): x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by $G(f)$.

III. CONTRA - Bc - CONTINUOUS FUNCTIONS

Definition 3.1. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called contra-Bc-continuous if $f^{-1}(V)$ is Bc - closed in X for every open set V of Y .
Definition 3.2. Let (X, τ) be topological space and $A \subseteq X$. Then the intersection of all open sets of X containing A is called kernel of A and is denoted by $\operatorname{Ker}(\mathrm{A})$.
Lemma 3.3. The following properties hold for subsets A and B of a topological space (X, τ).
(a) $x \in \operatorname{Ker}(A)$ if and only if $\mathrm{A} \cap \mathrm{F} \neq \phi$ for any closed set F of X containing x .
(b) $\mathrm{A} \subseteq \operatorname{Ker}(\mathrm{A})$ and $\mathrm{A}=\operatorname{Ker}(\mathrm{A})$ if A is open in X.
(c) If $\mathrm{A} \subseteq \mathrm{B}$, then $\operatorname{Ker}(\mathrm{A}) \subseteq \operatorname{Ker}(\mathrm{B})$.

Lemma 3.4. The following properties hold for a subset A of a topological space (X, τ):
(i) $\mathrm{Bc}-\operatorname{Int}(\mathrm{A})=\mathrm{X}-[\mathrm{Bc}-\mathrm{Cl}(\mathrm{X}-\mathrm{A})]$;
(ii) $\mathrm{x} \in \mathrm{Bc}-\mathrm{Cl}(\mathrm{A})$ if and only if $\mathrm{A} \cap \mathrm{U} \neq \phi$ for each $\mathrm{x} \in \mathrm{Bc}-\mathrm{O}(\mathrm{X}, \mathrm{x})$;
(iii) A is Bc -open if and only if $\mathrm{A}=\mathrm{Bc}-\operatorname{Int}(\mathrm{A})$;
(iv) A is Bc -closed if and only if $\mathrm{A}=\mathrm{Bc}-\mathrm{Cl}(\mathrm{A})$.
(a) f is contra -Bc -continuous;
(b) for each $\mathrm{x} \in \mathrm{X}$ and each closed subset F of Y containing $f(x)$, there exists $\mathrm{U} \in \mathrm{Bc}-\mathrm{O}(\mathrm{X}, \mathrm{x})$ such that $f(U) \subseteq F$;
(c) for each closed subset F of $\mathrm{Y}, f^{-1}(F)$ is Bc -open in X ;
(d) $f[B c-C l(A)] \subseteq \operatorname{Ker}[f(A)]$ for every subset A of X ;
(e) $B c-C l\left[f^{-1}(B)\right] \subseteq f^{-1}[\operatorname{Ker}(B)]$ for every subset B of Y .
Proof. $(a) \Rightarrow(b)$: Let $\mathrm{x} \in \mathrm{X}$ and F be any closed set of Y containing $f(x)$. Using (a), we have $f^{-1}(Y-F)=X-f^{-1}(F)$ is $\mathrm{Bc}-$ closed in X and so $f^{-1}(F)$ is $\mathrm{Bc}-$ open in X . Taking $U=f^{-1}(F)$, we get $\mathrm{x} \in \mathrm{U}$ and $f(U) \subseteq \mathrm{F}$.
$(b) \Rightarrow(c)$: Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists a $\mathrm{Bc}-$ open subset U_{x} containing x such that $f\left(U_{x}\right) \subseteq \mathrm{F}$. Therefore, we obtain $f^{-1}(F)=\bigcup\left\{U_{x}: x \in f^{-1}(F)\right\} \quad-\quad$ which is Bc - open in X .
$(c) \Rightarrow(a)$: Let V be any open set of Y . Then since $(\mathrm{Y}-\mathrm{V})$ is closed in Y , by (c) $f^{-1}(Y-V)=\mathrm{X}-f^{-1}(V)$ is $\mathrm{Bc}-$ open in X . Therefore, $f^{-1}(V)$ is $\mathrm{Bc}-$ closed in X .
$(c) \Rightarrow(d)$: Let A be any subset of X. Suppose that $y \notin \operatorname{Ker}[f(A)]$. Then by Lemma 3.3, there exists a closed set F of Y containing y such that $f(A) \cap F=\phi$. This implies that $A \bigcap f^{-1}(F)=\phi$ and so $B c-C l(A) \cap f^{-1}(F)=\phi$. Therefore, we
obtain

$$
f[B c-C l(A)] \cap F=\phi
$$

$y \notin f[B c-C l(A)]$.
$f[B c-C l(A)] \subseteq \operatorname{Ker}[f(A)]$.
$(d) \Rightarrow(e): \quad$ Let B be any subset of Y. Using (d) and Lemma 3.3 we have $f\left[B c-C l\left(f^{-1}(B)\right)\right] \subseteq \operatorname{Ker}\left[f\left(f^{-1}(B)\right)\right]$ $\subseteq \operatorname{Ker}(B)$. Thus it follows that $B c-C l\left[f^{-1}(B)\right] \subseteq f^{-1}[\operatorname{Ker}(B)]$.
$(e) \Rightarrow(a)$: Let V be an open subset of Y . Then from Lemma 3.3 and (e) we have $B c-C l\left[f^{-1}(V)\right] \subseteq f^{-1}[\operatorname{Ker}(V)]=f^{-1}(V)$ and hence $B c-C l\left[f^{-1}(V)\right]=f^{-1}(V)$. This shows that $f^{-1}(V)$ is $\mathrm{Bc}-$ closed in X .

The following lemma can be verified easily.
Lemma 3.6. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Bc -continuous if and only if for each $\mathrm{x} \in \mathrm{X}$ and for each open set V of Y containing $f(x)$, there exists $\mathrm{U} \in \mathrm{Bc}-\mathrm{O}(\mathrm{X}, \mathrm{x})$ such that $f(U) \subseteq V$.

Theorem 3.7. Suppose that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra-Bc-continuous and Y is regular. Then f is Bc -continuous.

Proof. Let $x \in X$ and V be an open set of Y containing $f(x)$. Since Y is regular, there exists an open set G in Y containing $f(x)$ such that $C l(G) \subseteq V . \quad$ Again, since f is contra $-B c$-continuous, so by Theorem 3.5, there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq C l(G)$. Then $f(U) \subseteq C l(G) \subseteq V$. Hence f is Bc-continuous.
Definition 3.8. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called almost-Bc-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there
exists $U \in B c-O(X, x)$ such that $f(U) \subseteq B c-\operatorname{Int}[C l(V)]$.

Almost-Bc-continuous function can be equivalently defined as in the following proposition.

Proposition 3.9. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then the following statements are equivalent:
(a) f is almost $-B c$ - continuous.
(b) For each $x \in X$ and each regular open set V of Y containing $f(x)$, there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq V$.
(c) $f^{-1}(V)$ is $B c$-open in X for every regular open set V of Y.
Definition 3.10. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be pre-Bc-open if image of each $B c$-open set of X is a $B c$-open set of Y.
Denition 3.11. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be $B c$-irresolute if preimage of a $B c$-open subset of Y is a $B c-$ open subset of X.
Theorem 3.12. Suppose that a function $f:(X, \tau) \rightarrow(Y, \sigma) \quad$ is pre $-B c-$ open and contra- Bc -continuous. Then f is almost $-\mathrm{Bc}-$ continuous.
Proof. Let $x \in X$ and V be an open set containing $f(x)$. Since f is contra -Bc -continuous, then by Theorem 3.5, there exists $\mathrm{U} \in \mathrm{Bc}-\mathrm{O}(\mathrm{X}, \mathrm{x})$ such that $f(U) \subseteq C l(V)$. Again, since f is pre- Bc -open, $f(U)$ is Bc -open in Y. Therefore, $f(U)=B c-\operatorname{Int}[f(U)]$ and hence $f(U) \subseteq B c-\operatorname{Int}[C l(f(U))] \subseteq B c-\operatorname{Int}[C l(V)]$.

So f is almost $-\mathrm{Bc}-$ continuous.
Theorem 3.13. Let $\left\{\left(X_{\lambda}, \tau_{\lambda}\right): \lambda \in \Lambda\right\}$ be any family of topological spaces. If a function $f: X \longrightarrow \prod_{\lambda \in \Lambda} X_{\lambda}$ is contra -Bc -continuous, then
$\pi_{\lambda} o f: X \longrightarrow X_{\lambda}$ is contra- $\mathrm{Bc}-$ continuous, for each $\lambda \in \Lambda$, where π_{λ} is the projection of $\prod_{\lambda \in \Lambda} X_{\lambda}$ onto X_{λ}.
Proof. For a fixed $\lambda \in \Lambda$, let V_{λ} be any open subset of X_{λ}. Since π_{λ} is continuous, $\pi_{\lambda}^{-1}\left(V_{\lambda}\right)$ is open in $\prod_{\lambda \in \Lambda} X_{\lambda}$. Since f is contra-Bc-continuous, $f^{-1}\left[\pi_{\lambda}^{-1}\left(V_{\lambda}\right)\right]=\left(\pi_{\lambda} \mathrm{of}\right)^{-1}\left(V_{\lambda}\right)$ is $\mathrm{Bc}-$ closed in X. Therefore, π_{λ} of is contra- $\mathrm{Bc}-$ continuous for each $\lambda \in \Lambda$,
Definition 3.14. Let (X, τ) be a topological space. Then the $\mathrm{Bc}-$ frontier of a subset A of X, denoted by $B c-\operatorname{Fr}(A), \quad$ is defined as $B c-\operatorname{Fr}(A)=[B c-C l(A)] \cap[B c-C l(X-A)]$ $=[B c-C l(A)]-[B c-\operatorname{Int}(A)]$.
Theorem 3.15. The set of all points x of X at which $f:(X, \tau) \rightarrow(Y, \sigma)$ is not contra $-\mathrm{Bc}-$ continuous is identical with the union of Bc -frontier of the inverse images of closed sets of Y containing $f(x)$.
Proof. Necessity: Let f be not contra-Bc-continuous at a point $x \in X$. Then by Theorem 3.5, there exists a closed set F of Y containing $f(x)$ such that $f(U) \cap(Y-F) \neq \phi$ for every $U \in B c-O(X, x)$, which implies that $U \cap f^{-1}(Y-F) \neq \phi . \quad$ Therefore, $x \in B c-C l\left[f^{-1}(Y-F)\right]=B c-C l\left[X-f^{-1}(F)\right]$. Again, since $\quad x \in f^{-1}(F)$, we get $x \in B c-C l\left[f^{-1}(F)\right]$ and so it follows that $x \in B c-\operatorname{Fr}\left[f^{-1}(F)\right]$.
Sufficiency: Suppose that $x \in\left(B c-F r\left[f^{-1}(F)\right]\right)$ for some closed set F of Y containing $f(x)$ and f is contra- Bc -continuous at x. Then there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq F$. Therefore
$x \in U \subseteq f^{-1}(F)$ and hence it follows that $x \in B c-\operatorname{Int}\left[f^{-1}(F)\right] \subseteq X-\left(B c-F r\left[f^{-1}(F)\right]\right)$.

But this is a contradiction. So f is not contra- $\mathrm{Bc}-$ continuous at x.
Definition 3.16. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called almost weakly -Bc -continuous if, for each $x \in X$ and for each open set V of Y containing $f(x)$, there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq C l(V)$.
Theorem 3.17. Suppose that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra- $\mathrm{Bc}-$ continuous. Then f is almost weakly- $\mathrm{Bc}-$ continuous.
Proof. For any open set V of $\mathrm{Y}, \mathrm{Cl}(\mathrm{V})$ is closed in Y. Since f is contra- Bc -continuous, $f^{-1}[\mathrm{Cl}(\mathrm{V})]$ is Bc -open set in X . We take $U=f^{-1}[C l(V)]$, then $f(U) \subseteq C l(V)$. Hence f is almost weakly - Bc -continuous.
Theorem 3.18. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma) \rightarrow(Z, \mu)$ be any two functions. Then the following properties hold:
(i) If f is contra -Bc -continuous function and g is a continuous function, then gof is contra - Bc - continuous.
(ii) If f is Bc -irresolute and g is contra- Bc -continuous, then gof is contra- $\mathrm{Bc}-$ continuous.
Proof. (i) For $\mathrm{x} \in \mathrm{X}$, let W be any closed set of Z containing $(g \circ f)(x)$. Since g is continuous, $V=g^{-1}(W)$ is closed in Y. Also, since f is contra- $\mathrm{Bc}-$ continuous, there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq V$. Therefore $(g \circ f)(U) \subseteq g[f(U)] \subseteq g(V) \subseteq W \quad$ and \quad so \quad it implies that $(g \circ f)(U) \subseteq W$. Hence, gof is contra -Bc - continuous.
(ii) For $\mathrm{x} \in \mathrm{X}$, let W be any closed set of Z containing $(g \circ f)(x)$. Since g is contra- $\mathrm{Bc}-$ continuous, there exists $V \in B c-O(Y, f(x))$ such that $g(V) \subseteq W$. Again, since f is $B c$-irresolute, there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq V$. This shows that $(g \circ f)(U) \subseteq W$. Hence, gof is contra-Bc-continuous.
Theorem 3.19. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be surjective $B c$-irresolute and pre-Bc-open function and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be any function. Then $g o f:(X, \tau) \rightarrow(Z, \eta)$ is contra $-\mathrm{Bc}-$ continuous if and only if g is contra- Bc -continuous.
Proof. The "if" part is easy to prove. To prove "only if" part, let $\quad g o f:(X, \tau) \rightarrow(Z, \eta)$ be contra - Bc-continuous and let F be a closed subset of Z. Then $(g o f)^{-1}(F)$ is a Bc - open subset of X i.e. $f^{-1}\left[g^{-1}(F)\right]$ is Bc -open in X. Since f is pre-Bc-open, $f\left[f^{-1}\left(g^{-1}(F)\right)\right]$ is a Bc -open subset of Y and so $g^{-1}(F)$ is Bc -open in Y. Hence, g is contra- $\mathrm{Bc}-$ continuous.

Definition 3.20. A topological space (X, τ) is said to be Bc - normal if each pair of non-empty disjoint closed sets can be separated by disjoint Bc -open sets. Definition 3.21. A topological space (X, τ) is said to be ultranormal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.
Theorem 3.22. Suppose that $f:(X, \tau) \rightarrow(Y, \sigma)$ is a contra $-\mathrm{Bc}-$ continuous, closed injection and Y is ultranormal. Then X is Bc -normal.
Proof. Let A and B be disjoint closed subsets of X. Since f is closed injection, $f(A)$ and $f(B)$ are disjoint closed subsets of Y. Again, since Y is ultranormal, $f(A)$ and $f(B)$ are separated by disjoint clopen sets P and Q (say) respectively.

Therefore, $\quad f(A) \subseteq P \quad$ and $\quad f(B) \subseteq Q \quad$ i.e., $A \subseteq f^{-1}(P)$ and $B \subseteq f^{-1}(Q)$, where $f^{-1}(P)$ and $f^{-1}(Q)$ are disjoint Bc -open sets of X (since f is contra- Bc -continuous). This shows that X is Bc - normal.

Definition 3.23. A topological space (X, τ) is called Bc - connected provided that X is not the union of two disjoint nonempty $\mathrm{Bc}-$ open sets of X.
Theorem 3.24. Suppose that $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra- Bc -continuous surjection, where X is Bc - connected and Y is any topological space, then Y is not a discrete space.
Proof. If possible, suppose that Y is a discrete space. Let P be a proper nonempty open and closed subset of Y. Then $f^{-1}(P)$ is a proper nonempty $\mathrm{Bc}-$ open and Bc -closed subset of X, which contradicts to the fact that X is Bc -connected. Hence the theorem follows.

Theorem 3.25. Suppose that $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra-Bc-continuous surjection and X is Bc - connected. Then Y is connected.
Proof. If possible, suppose that Y is not connected. Then there exist nonempty disjoint open sets P and Q such that $Y=P \bigcup Q$. So P and Q are clopen sets of Y. Since f is contra- Bc -continuous function, $f^{-1}(P)$ and $f^{-1}(Q)$ are $\mathrm{Bc}-$ open sets of X. Also $f^{-1}(P)$ and $f^{-1}(Q)$ are nonempty disjoint $\mathrm{Bc}-$ open sets of X and $X=f^{-1}(P) \bigcup f^{-1}(Q)$, which contradicts to the fact that X is Bc -connected. Hence Y is connected.
Theorem 3.26. A topological space (X, τ) is Bc -connected if and only if every contra - Bc - continuous function from X into any $T_{1}-\operatorname{space}(Y, \sigma)$ is constant.

Proof. Let X be Bc -connected. Now, since Y is a T_{1}-space, $\quad \Omega=\left\{f^{-1}(y): y \in Y\right\} \quad$ is disjoint

Bc -open partition of X. If $|\Omega| \geq 2$ (where $|\Omega|$ denotes the cardinality of Ω), then X is the union of two nonempty disjoint $\mathrm{Bc}-$ open sets. Since X is Bc -connected, we get $|\Omega|=1$. Hence, f is constant.
Conversely, suppose that X is not $\mathrm{Bc}-$ connected and every contra - $\mathrm{Bc}-$ continuous function from X into any T_{1}-space Y is constant. Since X is not Bc -connected, there exists a non-empty proper $\mathrm{Bc}-$ open as well as $\mathrm{Bc}-\mathrm{closed}$ set V (say) in X. We consider the space $Y=\{0,1\}$ with the discrete topology σ. The function $f:(X, \tau) \rightarrow(Y, \sigma)$ defined by $f(V)=\{0\}$ and $f(X-V)=\{1\} \quad$ is obviously contra- Bc -continuous and which is non-constant. This leads to a contradiction. Hence X is Bc -connected.
Definition 3.27. A topological space (X, τ) is said to be $\mathrm{Bc}-\mathrm{T}_{2}$ if for each pair of distinct points x, y in $X \quad$ there exist $\quad U \in B c-O(X, x) \quad$ and $V \in B c-O(X, y)$ such that $U \cap V=\phi$.
Theorem 3.28. Let (X, τ) and (Y, σ) be two topological spaces and suppose that for each pair of distinct points x and y in X there exists a function $f:(X, \tau) \rightarrow(Y, \sigma)$ such that $f(x) \neq f(y)$ where Y is an Urysohn space and f is contra -Bc - continuous function at x and y . Then X is $\mathrm{Bc}-\mathrm{T}_{2}$.
Proof. Let $x, y \in X$ and $x \neq y$. Then by assumption, there exists a function $f:(X, \tau) \rightarrow(Y, \sigma)$, such that $f(x) \neq f(y)$ where Y is Urysohn and f is contra- Bc - continuous at x and y. Now, since Y is Urysohn, there exist open sets U and V of Y containing $f(x)$ and $f(y)$ respectively, such that $C l(U) \cap C l(V)=\phi . \quad$ Also, $\quad f \quad$ being contra- $\mathrm{Bc}-$ continuous at x and y there exist

Bc -open sets P and Q containing x and y respectively such that $f(P) \subseteq C l(U)$ and $f(Q) \subseteq C l(V)$. Then $f(P) \cap f(Q)=\phi$ and so $P \cap Q=\phi$. Therefore X is $\mathrm{Bc}-\mathrm{T}_{2}$.
Corollary 3.29. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra- Bc -continuous injection where Y is an Urysohn space, then X is $\mathrm{Bc}-\mathrm{T}_{2}$.

Corollary 3.30. If f is contra $-\mathrm{Bc}-$ continuous injection of a topological space (X, τ) into an ultra Hausdorff space (Y, σ), then X is $\mathrm{Bc}-\mathrm{T}_{2}$.
Proof. Let $x, y \in X$ where $x \neq y$. Then, since f is an injection and Y is ultra Hausdorff, $f(x) \neq f(y)$ and there exist disjoint closed sets U and V containing $f(x)$ and $f(y)$ respectively. Again, since f is contra-Bc-continuous, $\quad f^{-1}(U) \in B c-O(X, x)$ and $\quad f^{-1}(V) \in B c-O(X, y) \quad$ with $f^{-1}(U) \cap f^{-1}(V)=\phi$. This shows that X is $\mathrm{Bc}-\mathrm{T}_{2}$.

IV. ALMOST CONTRA - Bc - CONTINUOUS FUNCTIONS

Definition 4.1. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called almost contra -Bc -continuous if $f^{-1}(V)$ is Bc - closed for every regular open set V of Y .
Theorem 4.2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then the following statements are equivalent:
(a) f is almost contra- Bc -continuous;
(b) $f^{-1}(F)$ is Bc -open in X for every regular closed set F of Y;
(c) for each $x \in X$ and each regular open set F of Y containing $f(x)$, there exists $U \in B C-O(X, x)$ such that $f(U) \subseteq F$.
(d) for each $x \in X$ and each regular open set V of Y non-containing $f(x)$, there exists a $B c$-closed set K of X non-containing x such that $f^{-1}(V) \subseteq K$. Proof. $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$: Let F be any regular closed set of Y . Then $(\mathrm{Y}-\mathrm{F})$ is regular open and therefore $f^{-1}(Y-F)=\mathrm{X}-f^{-1}(F) \in \mathrm{Bc}-\mathrm{C}(X)$. Hence, $f^{-1}(F) \in \mathrm{Bc}-\mathrm{O}(X)$. The converse part is obvious. $(\mathrm{b}) \Rightarrow(\mathrm{c})$: Let F be any regular closed set of Y containing $f(x)$. Then $f^{-1}(F) \in \mathrm{Bc}-\mathrm{O}(X)$ and $x \in f^{-1}(F)$. Taking $U=f^{-1}(F)$ we get $f(U) \subseteq F$.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$: Let F be any regular closed set of Y and $x \in f^{-1}(F)$. Then, there exists $U_{x} \in \mathrm{Bc}-\mathrm{O}(X, x)$ such that $f\left(U_{x}\right) \subseteq F$ and so $U_{x} \subseteq f^{-1}(F)$. Also, we have $f^{-1}(F)=\bigcup_{x \in f^{-1}(F)} U_{x}$. Hence $f^{-1}(F) \in \mathrm{Bc}-\mathrm{O}(X)$. $(\mathrm{c}) \Rightarrow(\mathrm{d})$: Let V be any regular open set of Y noncontaining $f(x)$. Then $(\mathrm{Y}-\mathrm{V})$ is regular closed set of Y containing $f(x)$. Hence by (c), there exists $U \in \mathrm{Bc}-\mathrm{O}(X, x)$ such that $f(U) \subseteq(Y-V)$. Hence, we obtain $U \subseteq f^{-1}(Y-V) \subseteq \mathrm{X}-f^{-1}(V)$ and so $f^{-1}(V) \subseteq(X-U)$. Now, since $U \in \mathrm{Bc}-\mathrm{O}(X)$, $(\mathrm{X}-\mathrm{U})$ is $\mathrm{Bc}-$ closed set of X not containing x. The converse part is obvious.
Theorem 4.3. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be almost contra -Bc -continuous. Then f is almost weakly $-\mathrm{Bc}-$ continuous.
Proof. For $x \in X$, let H be any open set of Y containing $f(x)$. Then $\mathrm{Cl}(\mathrm{H})$ is a regular closed set of Y containing $f(x)$. Then by Theorem 4.2, there exists $G \in B c-O(X, x)$ such that $f(G) \subseteq C l(H)$. So f is almost weakly - $\mathrm{Bc}-$ continuous.

Theorem 4.4. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an almost contra -Bc - continuous injection and Y is weakly Hausdorff. Then X is $\mathrm{Bc}-\mathrm{T}_{1}$.
Proof. Since Y is weakly Hausdorff, for distinct points x, y of Y , there exist regular closed sets U and V such that $f(x) \in U, \quad f(y) \notin U$ and $f(y) \in V, \quad f(x) \notin V$. Now, f being almost contra- Bc -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are Bc -open subsets of X such that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ and $y \in f^{-1}(V), \quad x \notin f^{-1}(V)$. This shows that X is $\mathrm{Bc}-\mathrm{T}_{1}$.
Corollary 4.5. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a contra -Bc - continuous injection and Y is weakly Hausdorff, then X is $\mathrm{Bc}-\mathrm{T}_{1}$.
Theorem 4.6. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an almost contra- Bc -continuous surjection and X be $B c$-connected. Then Y is connected.
Proof. If possible, suppose that Y is not connected. Then there exist disjoint non-empty open sets U and V of Y such that $Y=U \bigcup V$. Since U and V are clopen sets in Y , they are regular open sets of Y . Again, since f is almost contra $-\mathrm{Bc}-$ continuous surjection, $f^{-1}(U)$ and $f^{-1}(V)$ are $\mathrm{Bc}-$ open sets of X and $X=f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not $B c$-connected. But this is a contradiction. Hence Y is connected.
Definition 4.7. A topological space (X, τ) is said to be $B c$-compact if every $B c$-open cover of X has a finite subcover.
Definition 4.8. A topological space (X, τ) is said to be countably $B c$-compact if every countable cover of X by $B c$-open sets has a finite subcover.
Definition 4.9. A topological space (X, τ) is said to be $B c$-Lindeloff if every $B c$-open cover of X has a countable subcover.

Theorem 4.10. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an almost contra - Bc - continuous surjection. Then the following statements hold:
(a) If X is $B c$-compact, then Y is S-closed.
(b) If X is $B c$-Lindeloff, then Y is
S-Lindeloff.
(c) If X is countably $B c$-compact, then Y is countably S-closed.
Proof. (a): Let $\left\{\mathrm{V}_{\alpha}: \alpha \in \mathrm{I}\right\}$ be any regular closed cover of Y. Since f is almost contra- Bc -continuous, then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a $B c$-open cover of X. Again, since X is $B c$-compact, there exist a finite subset I_{0} of I such that $X=\bigcup\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\} \quad$ and hence $\mathrm{Y}=\left\{\mathrm{V}_{\alpha}: \alpha \in \mathrm{I}_{0}\right\}$. Therefore, Y is S-closed. The proofs of (b) and (c) are being similar to (a): omitted.

Definition 4.11. A topological space (X, τ) is said to be $B c$-closed compact if every $B c$-closed cover of X has a finite subcover.
Definition 4.12. A topological space (X, τ) is said to be countably $B c$-closed if every countable cover of X by $B c$-closed sets has a finite subcover.
Definition 4.13. A topological space (X, τ) is said to be Bc-closed Lindeloff if every Bc-closed cover of X has a countable subcover.
Theorem 4.14. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an almost contra $-\mathrm{Bc}-$ continuous surjection. Then the following statements hold:
(a) If X is $B c$-closed compact, then Y is nearly compact.
(b) If X is $B c$-closed Lindeloff, then Y is nearly Lindeloff.
(c) If X is countably Bc-closed compact, then Y is nearly countable compact.

Proof. (a):Let $\left\{\mathrm{V}_{\alpha}: \alpha \in \mathrm{I}\right\}$ be any regular open cover of Y . Since f is almost contra- Bc -continuous, then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a $B c$-closed cover of X. Again, since X is $B c$-closed compact, there exists a finite subset I_{0} of I such that $X=\bigcup\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\} \quad$ and \quad hence $\mathrm{Y}=\left\{\mathrm{V}_{\alpha}: \alpha \in \mathrm{I}_{0}\right\}$. Therefore, Y is nearly compact. The proofs of (b) and (c) are being similar to (a): omitted.

V. CLOSED GRAPHS VIA Bc - OPEN SETS

Definition 5.1. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then the graph $G(f)=\{(x, f(x)): x \in X\}$ of f is said to be Bc-closed (resp. contra - Bc-closed) if for each $(x, y) \in(X \times Y)-G(f)$, there exist a $U \in B c-O(X, x)$ and an open set (resp. a closed set) V in Y containing y such that $(U \times V) \cap G(f)=\phi$.
Lemma 5.2. A graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is Bc-closed (resp. contra Bc-closed) in $X \times Y$ if and only if for each $(x, y) \in(X \times Y)-G(f), \quad$ there exist $U \in B c-O(X, x)$ and an open set (resp. a closed set) V in Y containing y such that $f(U) \cap V=\phi$.
Proof. We shall prove that $f(U) \cap V=\phi \Leftrightarrow$ $(U \times V) \cap G(f)=\phi$. Let $(U \times V) \cap G(f) \neq \phi$. Then there exists $(x, y) \in(U \times V)$ and $(x, y) \in G(f)$. This implies that $x \in U, \quad y \in V$ and $y=f(x) \in V$. Therefore, $f(U) \cap V \neq \phi$. Hence the result follows.
Theorem 5.3. Suppose that $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra $B c$-continuous and Y is Urysohn. Then $G(f)$ is contra $B c-$ closed in $X \times Y$.

Proof. Let $(x, y) \in(X \times Y)-G(f)$. It follows that $f(x) \neq y$. Since Y is Urysohn, there exist open sets V and W in Y such that $f(x) \in V, \quad y \in W$ and $C l(V) \cap C l(W)=\phi$. Now, since f is contra $B c$-continuous, there exists a $U \in B c-O(X, x)$ such that $f(U) \subseteq C l(V)$ which implies that $f(U) \cap C l(W)=\phi$. Hence by Lemma 5.2, $G(f)$ is contra Bc-closed in $X \times Y$.
Theorem 5.4. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function and $g: X \rightarrow X \times Y$ be the graph function of f, defined by $g(x)=(x, f(x))$ for every $x \in X$. If g is contra $B c$-continuous, then f is contra Bc-continuous.
Proof. Let G be an open set in Y, then $X \times G$ is an open set in $X \times Y$. Since g is contra Bc-continuous, it implies that $f^{-1}(G)=g^{-1}(X \times G)$ is a $B c$-closed set of X. Therefore, f is contra $B c$-continuous.
Theorem 5.5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ have a contra $B c$-closed graph. If f is injective, then X is $B c-T_{1}$.
Proof. Let x_{1} and x_{2} be any two distinct points of X. Then, we have $\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y)-G(f)$. Then, there exists a $B c$-open set U in X containing x_{1} and $F \in C\left(Y, f\left(x_{2}\right)\right)$ such that $f(U) \cap F=\phi$. Hence $U \bigcap f^{-1}(F)=\phi$. Therefore, we have $x_{2} \notin U$. This implies that X is $B c-T_{1}$.
Definition 5.6. The graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be strongly contra $B c-$ closed if for each $(x, y) \in(X \times Y)-G(f)$, there exist $U \in B c-O(X, x)$ and regular closed set V in Y containing y such that $(U \times V) \bigcap G(f)=\phi$.

Lemma 5.7. The graph $G(f)$ of a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is strongly contra $B c-$ closed in $X \times Y$ if and only if for each $(x, y) \in(X \times Y)-G(f), \quad$ there exist $U \in B c-O(X, x)$ and regular closed set V in Y containing y such that $f(U) \cap V=\phi$.
Theorem 5.8. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an almost weakly-Bc-continuous and Y is Urysohn. Then $G(f)$ is strongly contra $B c-$ closed in $X \times Y$.
Proof. Let $(x, y) \in(X \times Y)-G(f)$. Then $y \neq f(x)$ and since Y is Urysohn, there exist open sets G, H in $\quad Y$ such that $f(x) \in G, \quad y \in H \quad$ and $C l(G) \cap C l(H)=\phi$. Now, since f is almost weakly-Bc-continuous, there exists $U \in B c-O(X, x)$ such that $f(U) \subseteq C l(G)$. This implies that $f(U) \cap C l(H)=$ $f(U) \cap C l[\operatorname{Int}(H)]=\phi, \quad$ where $C l[\operatorname{Int}(H)]$ is regular closed in Y. Hence by above Lemma 5.7, $G(f)$ is strongly contra $B c-$ closed in $X \times Y$.
Theorem 5.9. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an almost $B c$-continuous and Y is T_{2}. Then $G(f)$ is strongly contra Bc-closed in $X \times Y$.
Proof. Let $(x, y) \in(X \times Y)-G(f)$. Then $y \neq f(x)$ and since Y is T_{2}, there exist open sets G and H containing y and $f(x)$, respectively, such that $G \bigcap H=\phi ; \quad$ which is equivalent to $C l(G) \cap \operatorname{Int}[C l(H)]=\phi$. Again, since f is almost $B c-$ continuous and $\operatorname{Int}[C l(H)]$ is regular open, by proposition 3.9 , there exists $W \in B c-O(X, x)$ such that $f(W) \subseteq \operatorname{Int}[C l(H)]$. This implies that $f(W) \cap C l(G)=\phi$ and by Lemma 5.7, $G(f)$ is strongly contra $B c-$ closed in $X \times Y$.

Definition 5.10. A filter base \mathfrak{J} on a topological space (X, τ) is said to be $B c$-convergent to a point x in X if for any $U \in B c-O(X, \tau)$ containing x, there exists an $F \in \mathfrak{J}$ such that $F \subseteq U$.
Theorem 5.11. Prove that every function $\psi:(X, \tau) \rightarrow(Y, \sigma)$, where (Y, σ) is compact with $B c$-closed graph is $B c$-continuous.
Proof. Let ψ be not $B c$-continuous at $x \in X$. Then there exists an open set S in Y containing $\psi(x)$ such that $\psi(T) \not \subset S$ for every $T \in B c-O(X, x)$. It is obvious to verify that $\wp=\{T \subseteq X: T \in B c-O(X, x)\}$ is a filterbase on X that $B c$-converges to x. Now we shall show that $\Upsilon_{\wp}=\{\psi(T) \bigcap(Y-S): T \in B c-O(X, x)\} \quad$ is a filterbase on Y. Here for every $T \in B c-O(X, x)$, $\psi(T) \not \subset S$, i.e. $\psi(T) \cap(Y-S) \neq \phi$. So $\phi \notin \Upsilon_{\wp}$. Let $G, H \in \Upsilon_{\wp}$. Then there are $T_{1}, T_{2} \in \wp$ such that $G=\psi\left(T_{1}\right) \bigcap(Y-S) \quad$ and $\quad H=\psi\left(T_{2}\right) \bigcap(Y-S)$. Since \wp is a filterbase, there exists a $T_{3} \in \wp$ such that $T_{3} \subseteq T_{1} \cap T_{2}$ and so $W=\psi\left(T_{3}\right) \cap(Y-S) \in \Upsilon_{\wp}$ with $W \subseteq G \bigcap H$. It is clear that $G \in \Upsilon_{\wp}$ and $G \subseteq H$ imply $H \in \Upsilon_{\wp}$. Hence Υ_{\wp} is a filterbase on Y. Since $Y-S$ is closed in compact space Y, S is itself compact. So, Υ_{\wp} must adheres at some point $y \in Y-S$. Here $y \neq \psi(x)$ ensures that $(x, y) \notin G(\psi)$. Thus Lemma 5.2 gives us a $U \in B c-O(X, x)$ and an open set V in Y containing y such that $\psi(U) \cap V=\phi$, i.e. $[\psi(U) \cap(Y-S)] \cap V=\phi$. But this is a contradiction.
Theorem 5.12. Suppose that an open surjection $\psi:(X, \tau) \rightarrow(Y, \sigma)$ possesses a $B c-c l o s e d$ graph. Then Y is T_{2}.

Proof. Let $p_{1}, p_{2} \in Y$ with $p_{1} \neq p_{2}$. Since ψ is a surjection, there exists an $x_{1} \in X$ such that $\psi\left(x_{1}\right)=p_{1} \quad$ and $\quad \psi\left(x_{1}\right) \neq p_{2} . \quad$ Therefore $\left(x_{1}, p_{2}\right) \notin G(\psi)$ and so by Lemma 5.2, there exist $U_{1} \in B c-O\left(X, x_{1}\right)$ and open set V_{1} in Y containing p_{2} such that $\psi\left(U_{1}\right) \cap V_{1}=\phi$. Since ψ is $B c-$ open, $\psi\left(U_{1}\right)$ and V_{1} are disjoint open sets containing p_{1} and p_{2} respectively. So Y is T_{2}.

Corollary 5.13. If a function $\psi:(X, \tau) \rightarrow(Y, \sigma)$ is a surjection and possesses a $B c$-closed graph, then Y is T_{1}.

VI. ACKNOWLEDGMENT

The first author is highly and greatly thankful to Prince Mohammad Bin Fahd University for providing all necessary research facilities during the preparation of this research paper.

VII. REFERENCES

[1] Raad Aziz Al-Abdulla and Ruaa Muslim Abed, On Bc - open sets, International Journal of Science and Research, Volume 3, Issue 10, (2014), 7 pages.
[2] Metin Akdag \& Alkan Ozkan, Some Properties of Contra gb - continuous Functions, Journal of New Results in Science, 1 (2012) $40-49$.
[3] D. Andrijevic, On b - open sets, Math. Vesnik, 48(1996), $59-64$.
[4] G. Anitha and M. Mariasingam, Contra g ~ -WG Continuous Functions, International Journal of Computer Applications (0975-8887) Volume 49No.11, (July 2012), 34 - 40.
[5] S. Balasubramanian, Almost contra vg-continuity, International Journal of Mathematical Engineering and Science, Volume 1 Issue 8 (August 2012), 51 65.
[6] M. Caldas and S. Jafari, Some properties of contra $-\beta$ - continuous functions, Mem. Fac. Sci. Kochi. Univ., Series A. Math., 22(2001), 19 - 28.
[7] J. Dontchev, Contra - continuous functions and strongly S - closed spaces, Internat. J. Math. Sci., 19(2) (1996), 303 - 310.
[8] J. Dontchev and T. Noiri, Contra-semi-continuous functions, Mathematica Pannonica, 10(2) (1999), 159-168.
[9] E. Ekici, Almost contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc. , 27(1) (2004), pp. 53-65.
[10] E. Ekici and T. Noiri, Contra δ - precontinuous functions, Bull. Cal. Math. Soc., 98(3) (2006), 275 284.
[11] E. Ekici, On contra $-\pi g$--continuous functions, Chaos, Solitons and Fractals, 35(2008), 71 - 80.
[12] M. K. Gosh and C.K. Basu, Contra - e Continuous functions, Gen. Math. Notes, Vol. 9, No.2, (2012), 1 - 18.
[13] Hariwan Z. Ibrahim, Bc-Open Sets in Topological Spaces, Advances in Pure Mathematics, Vol. 3, No. 1 (2013), 34 - 40.
[14] Hariwan Z. Ibrahim, Bc-Separation Axioms in Topological Spaces, Gen. Math. Notes, Vol. 17, No. 1 (2013), pp. 45 - 62.
[15] S. Jafari and T. Noiri, contra $-\alpha$ - continuous functions between topological spaces, Iranian Int. J. Sci, 2(2001), 153 - 167.
[16] S. Jafari and T. Noiri, On contra - precontinuous functions, Bull. Malaysian Math. Soc., 25(2002), 115-128.
[17] S. Jafari and T. Noiri, Contra - super - continuous functions, Annales Univ. Sci. Budapest 42(1999), $27-34$.
[18] A.A. Nasef, Some properties of contra $-\gamma-$ continuous functions, Chaos, Solitons and Fractals, 24(2005), 471 - 477.
[19] Govindappa Navalagi and S.M. Sjata, Some Contra - Continuous Functions via Pre - Open and $-\alpha-$ Open Sets, International Journal of Mathematical Sciences \& Applications, Vol. 2 Nr. 1 J. 2012, pp. $23-230$.
[20] Neeran Tahir Al-Khafagy and Hanan Ali Hussein, bc - continuous function, Journal of Babylon

University/Pure and Applied Sciences, Vol.21, No. 6, (2013), 1994 - 2000.
[21] Mustafa H.J. and Muhammad S.K. and Al-Kafaji N.T. ,2010," αc-continuous function " ,Journal of kufa for Mathematics and Computer, Vol.1,No.1,April,pp. 104-111.
[22] T. Noiri and V. Popa, Some properties of almost contra precontinuous functions, Bull. Malays. Math. Sci. Soc., 28 (2005), pp. 107-116.
[23] A. Al-Omari and M.S. Md Noorani, Contra - ω continuous and almost contra $-\omega$ - continuous, Internat. Jour. Math. Math. Sci., Article ID 40469, (2007) 13 pages.
[24] A. Al - Omari and M.S. Md Noorani, Some properties of contra - b-continuous and almost contra - b-continuous functions, European Jour. Pure. Appl. Math., 2(2) (2009), 213 - 220.
[25] Murad "Ozkoc and G"ulhan Aslım, On weakly e - continuous functions, Hacettepe Journal of Mathematics and Statistics, Volume 40 (6) (2011), 781-791.
[26] N. Rajesh. On total $-\omega-$ Continuity, Strong $-\omega-$ Continuity and contra $-\omega$ - Continuity, Soochow Journal of Mathematics,2007, 33.4:679690.
[27] S. Sekar and R. Brindha, Almost Contra Pre Generlized b - Continuous Functions in Topological Spaces, Malaya Journal of Matematik , 5(2) (2017) 194-201.
[28] R. Staum, The Algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50(1974), 169 - 185.
[29] Appachi Vadivel, Radhakrishnan Ramesh and Duraisamy Sivakumar, Contra $-\beta^{*}-$ continuous and almost contra $-\beta^{*}$ - continuous functions, Sahand Communications in Mathematical Analysis, Vol. 8, No. 1 (2017), $55-71$.
[30] M.K.R.S.Veerakumar, Contra - Pre - Semi Continuity. B.M.M.S.S., (2005) 28 (1):67-71.
[31] Stephen Willard, General Topology, Addison Wesley, 1970.

